Ph.D. Qualifying Exam: Algebra February 2016

Student ID:

Name:

Note: Be sure to use English for your answers.

- 1. [20 pts] Determine whether the followings are true or false. If your answer is false, give a counterexample. (You don't have to prove your assertions)
 - (a) Let G be a finite group of order n and $d \mid n$. Then there exists a subgroup H of G of order d.
 - (b) Any product of free modules is free.
 - (c) If L/K is a finite extension of fields, then there exist only finitely many intermediate fields.
 - (d) If L is a normal extension of K and K is a normal extension of F, then L is a normal extension of F.
- 2. [15 pts] Let G be a finite group of order p^3q , where p and q are primes. Then either G has a normal Sylow p-group or Sylow q-group or p=2, q=3 and |G|=24.
- 3. [20 pts] Let R be a commutative ring with identity. Show that
 - (a) if a is a nilpotent element of R, i.e. $a^m = 0$ for some positive integer m, then 1 + a is a unit in R.
 - (b) if $a_0 + a_1X + \cdots + a_nX^n$ in R[X] is invertible, then a_0 is a unit and a_i with i > 0 is nilpotent.
 - (c) if $a_0 + a_1 X + \cdots + a_n X^n$ in R[X] is nilpotent, then all a_i 's are nilpotent.
- 4. [15 pts] Let K/F be a Galois extension with cyclic Galois group of order n generated by σ . Suppose that $\alpha \in K$ has $N_{K/F}(\alpha) = 1$. Show that α is of the form $\alpha = \frac{\beta}{\sigma(\beta)}$ for some $\beta \in K$.
- 5. [15 pts] Prove that the ring

$$\mathbb{Z}[\sqrt{-2}] = \{m + n\sqrt{-2} : m, n \in \mathbb{Z}\}$$

is a Euclidean domain.

6. [15 pts] Let R be a ring with identity. Suppose that

$$\begin{array}{ccc}
A & \xrightarrow{\psi} & B & \xrightarrow{\phi} & C \\
\alpha \downarrow & & \beta \downarrow & & \gamma \downarrow \\
A' & \xrightarrow{\psi'} & B' & \xrightarrow{\phi'} & C'
\end{array}$$

is a commutative diagram of R-modules and that the rows are exact. Prove that

- (a) if ϕ and α is surjective, and β is injective, then γ is injective.
- (b) if ψ' , α and γ are injective, then β is injective.

Ph.D. Qualifying Exam: Differential Geometry February 2016

Student ID:

Name:

Note: Be sure to use English for your answers.

1. [20 pts] Let 0 < a < b. Show that the subset of \mathbb{R}^3 described by the equation

$$\left(\sqrt{x^2 + y^2} - b\right)^2 + z^2 = a^2$$

is a submanifold. Show that it is diffeomorphic to $S^1 \times S^1$.

- 2. [20 pts] Suppose that V is a vector space of dimension n and $L^k_{alt}(V)$ is the space of alternating k-multilinear maps.
 - (a) Write down the definition of exterior product or wedge product $\alpha \wedge \beta$, with $\alpha \in L^r_{alt}(V)$ and $\beta \in L^s_{alt}(V)$.
 - (b) Determine $dim(L_{alt}^k(V))$.
 - (c) Suppose $F \in L(V,V)$, that is $F:V \to V$ is a linear map. If $F^*:L^n_{alt}(V) \to L^n_{alt}(V)$ is the map induced on the space of alternating n-multilinear maps, then determine $F^*\omega$ for an arbitrary $\omega \in L^n_{alt}(V)$.
- 3. [20 pts] Suppose $S \subset M$ is a k-dimensional regular submanifold with boundary ∂S (possibly empty) and Φ_t is the flow of some complete smooth vector field X defined on M.
 - (a) Show that $\Phi_t(S)$ is a regular manifold with boundary.
 - (b) Show that

$$\int_{S} \Phi_{t}^{*} \eta = \int_{\Phi_{t}(S)} \eta,$$

where η is a smooth differential k-form with compact support.

(c) Show the formula:

$$\frac{d}{dt} \int_{\Phi_t(S)} \eta = \int_{\Phi_t(S)} i_X d\eta + \int_{\partial(\Phi_t(S))} i_X \eta.$$

4. [20 pts] Show the following statement:

If a smooth n-manifold M has a good cover¹ then its de Rham cohomology groups are all finite dimensional.

5. [20 pts] Compute the de Rham cohomology groups of $\mathbb{R}^n \setminus \{p,q\}$, with p,q distinct points of \mathbb{R}^n .

¹An open cover $\{U_{\alpha}\}_{{\alpha}\in A}$ of an *n*-manifold is called a good cover if for every choice $\alpha_0,\ldots,\alpha_k\in A$ the set $U_{\alpha_0}\cap\cdots\cap U_{\alpha_k}$ is diffeomorphic to \mathbb{R}^n (or empty).

Ph.D. Qualifying Exam: Real Analysis February 2016

Student ID:

Name:

Note: Be sure to use English for your answers.

- 1. [15 pts] Suppose that f is a measurable function in \mathbb{R}^d . Prove that there exists a sequence of step functions that converges pointwise to f(x) for almost every x.
- 2. [15 pts] Suppose that $\mathcal{B} = \{B_1, B_2, \dots, B_N\}$ is a finite collection of open balls in \mathbb{R}^d . Prove that there exists a disjoint subcollection $B_{i_1}, B_{i_2}, \dots, B_{i_k}$ of \mathcal{B} such that

 $m\left(\bigcup_{\ell=1}^{N} B_{\ell}\right) \leq 3^{d} \sum_{i=1}^{k} m(B_{i_{i}}),$

where m is the Lebesgue measure on \mathbb{R}^d .

3. [15 pts] Let $F: \mathbb{R} \to \mathbb{R}$ be a function satisfying

$$F(x) = \int_{a}^{x} f(y)dy$$

for an integrable function f. Prove that F is absolutely continuous.

- 4. Prove the following statement:
 - (a) [10 pts] If $1 \leq p < q < \infty$, then $L^p(\mathbb{R}) \cap L^{\infty}(\mathbb{R}) \subset L^q(\mathbb{R})$.
 - (b) [10 pts] If $f \in L^r(\mathbb{R})$ for some $r < \infty$, then $\lim_{p \to \infty} ||f||_p = ||f||_{\infty}$.
- 5. [20 pts] Let \mathcal{H} be a Hilbert space and T be a linear bounded operator on \mathcal{H} . Prove that the operator norm ||T|| satisfies

$$\|T\|=\sup_{f,g\in\mathcal{H}}\{|\langle Tf,g\rangle:\|f\|,\|g\|\leq 1\}.$$

6. [15 pts] Assume that μ , ν , and λ are σ -finite measures on a measure space (X, \mathcal{M}) . Suppose that $\nu \ll \mu$ and $\mu \ll \lambda$. Prove that $\nu \ll \lambda$ and

$$\frac{d\nu}{d\lambda} = \frac{d\nu}{d\mu} \frac{d\mu}{d\lambda}$$

almost everywhere.

Ph.D. Qualifying Exam: Complex Analysis February 2016

Student ID:

Name:

Note: Be sure to use English for your answers.

- 1. [15 pts] Let Ω be a connected open subset of \mathbb{C} and $\{f_n\}$ a sequence of injective holomorphic functions on Ω that converges uniformly on every compact subset of Ω to a holomorphic function f. Prove that f is either injective or constant.
- 2. [10 pts] Compute the following integral and justify the calculation:

$$\int_{-\infty}^{\infty} e^{-ikx} \frac{1}{(x^2+1)^2} dx \quad \text{for } k \text{ real.}$$

3. [15 pts] Let z_1, \dots, z_n be distinct complex numbers contained in the disk $B_R(0) = \{z : |z| < R\}$ for some R > 0. And let $q(z) = (z - z_1) \cdots (z - z_n)$. Prove the following:

$$P(z) := \frac{1}{2\pi i} \int_{\partial B_R(0)} \frac{f(\xi)}{\xi - z} \left(1 - \frac{q(z)}{q(\xi)} \right) d\xi$$

is a polynomial of degree (n-1) such that $P(z_k) = f(z_k)$ for $k = 1, \ldots, n$.

- 4. [15 pts] Let f be a function which is continuous in $\{z \in \mathbb{C} : |z| \leq 1\}$ and holomorphic in $\{z \in \mathbb{C} : |z| < 1\}$. Suppose also that |f(z)| = 1 whenever |z| = 1. Show that f can be extended to a meromorphic function in \mathbb{C} which has at most a finite number of poles.
- 5. [15 pts] Let f be a nowhere vanishing holomorphic function in a simply connected open set Ω . Prove that there exists a holomorphic function g in Ω such that $f(z) = e^{g(z)}$.
- 6. [15 pts] Find all functions, say f, satisfying the following: f is an entire function of finite order that omits two values.
- 7. [15 pts] Let f be a conformal mapping from $\Omega = \{z : -1 < \text{Re}(z) < 1\}$ to $\{z : |z| < 1\}$ for which f(0) = 0 and f'(0) > 0. Prove the uniqueness of f and compute f'(0).

Ph.D. Qualifying Exam: Probability Theory February 2016

Student ID:

Name:

Note: Be sure to use English for your answers.

- 1. [15 pts] Let (Ω, \mathcal{B}, P) be a probability space and $X \in L_1$. For a random variable X', prove the following. $\int_A X \ dP = \int_A X' \ dP$ for any $A \in \mathcal{B}$ if and only if $\int_A X \ dP = \int_A X' \ dP$ for any $A \in \mathcal{P}$ where \mathcal{P} is a π -system generating \mathcal{B} and containing Ω .
- 2. [15 pts] For a sequence of events $\{A_n\}$, show the following. $P\{\limsup_{n\to\infty}A_n\}=1$ if and only if $\sum_{n=1}^{\infty}P\{A\cap A_n\}=\infty$ for all events A such that $P\{A\}>0$.
- 3. [15 pts] State Central Limit Theorem. Use the following to show Central Limit Theorem.

 $\left| e^{ix} - \sum_{k=0}^{n} \frac{(ix)^k}{k!} \right| \le \min\left(\frac{|x|^{n+1}}{(n+1)!}, \frac{2|x|^n}{n!}\right).$

- 4. [15 pts] A sequence $\{X_n\}$ is said to converge completely to a random variable X if $\sum_{n=1}^{\infty} P\{|X_n-X|>\epsilon\}<\infty$ for every $\epsilon>0$. Prove or disprove the following.
 - (a) If X_n converges completely to a random variable X, then X_n converges to X almost surely.
 - (b) If X_n converges to X almost surely, then X_n converges completely to X.
- 5. [15 pts] For random variables X_1, X_2 and Y with $Y \in L_1$, suppose that $\sigma(Y, X_1)$ is independent of $\sigma(X_2)$. Show that $E[Y|X_1, X_2] = E[Y|X_1]$ almost surely.
- 6. [15 pts] If X_n converges in distribution to X_0 and $\sup_{n\geq 1} E[|X_n|^{2+\delta}] < \infty$, then show that $\lim_{n\to\infty} E[X_n] = E[X_0]$ and $\lim_{n\to\infty} Var[X_n] = Var[X_0]$.
- 7. [10 pts] Show that a sequence of normal distributions is tight if and only if their means and variances are bounded.

Ph.D. Qualifying Exam: Advanced Statistics February 2016

Student ID:

Name:

Note: Be sure to use English for your answers.

1. Let X_1, \dots, X_n be iid from an Exponential distribution with mean $\lambda > 0$. Let $0 < a \le b < \infty$. For $X_i = x_i$, let

$$Y_i = \begin{cases} 1 & \text{if } 0 < x_i < b \\ 0 & \text{otherwise} \end{cases}$$

and

$$Z_i = \left\{ egin{array}{ll} 1 & ext{if } a < x_i \\ 0 & ext{otherwise.} \end{array}
ight.$$

(a) [5 pts] Find the joint distribution of Y_1 and Z_1 .

(b) [5 pts] Find the condition, if any, on a and b under which Y_1 and Z_1 are independent.

(c) [10 pts] Suppose that X_i 's are not observable and only (Y_i, Z_i) , $i = 1, \dots, n$, are observed. Let a = b. Find the MLE of λ based on the observed data.

2. [10 pts] Let X_1, \dots, X_n be a random sample from the distribution F. Let $\hat{F}_n(x) = \frac{1}{n} \sum_{i=1}^n I(X_i \leq x)$ where I(s) = 1 if the statement s is true and 0 otherwise. Show that $\hat{F}_n(x)$ converges to F(x) in probability.

3. Let X_1, \dots, X_n be a random sample from $U(\theta_1, \theta_2)$.

(a) [5 pts] Find the method of moments estimators of θ_1 and θ_2 .

(b) [5 pts] Find the MLE's $\hat{\theta}_1$ and $\hat{\theta}_2$ of θ_1 and θ_2 .

(c) [10 pts] Find a complete sufficient statistic for (θ_1, θ_2) if it exists. If there is no such statistic, explain why.

(d) [10 pts] Let $X_{(1)}$ and $X_{(n)}$ be the smallest and the largest of the sample, respectively. Find a 95% confidence interval of $\theta_2 - \theta_1$ and express it in terms of $X_{(1)}$ and $X_{(n)}$.

4. Let X_1, \dots, X_n be iid from $N(\theta, 1)$. Define

$$Y_i = \begin{cases} 1 & \text{if } X_i > 0 \\ 0 & \text{if } X_i \le 0. \end{cases}$$

Let $\psi = P(Y_i = 1)$.

- (a) [3 pts] Find the MLE $\hat{\theta}$ of θ .
- (b) [3 pts] Find the MLE $\hat{\psi}$ of ψ .
- (c) [4 pts] Let $\tilde{\psi} = (\sum_{i=1}^n Y_i)/n$. Find $Var(\tilde{\psi})$.
- (d) [10 pts] Find an asymptotic variance of $\hat{\psi}$ by applying the Delta method.
- 5. [10 pts] Let X_1, \dots, X_n be a random sample from a distribution with parameter θ . Let $\hat{\theta}$ be the MLE of θ . Show that, for any function g, the MLE $\hat{\tau}$ of $\tau = g(\theta)$ is given by $g(\hat{\theta})$. This is the invariance property of the MLE.
- 6. [10 pts] Let X_1, \dots, X_n be a random sample from a Poisson distribution with parameter λ . Let the observed value of $\sum_{i=1}^n X_i = y_0$. Use the equation

$$P(W \le w) = P(Z \ge k)$$

where W is a Gamma (k, β) random variable and Z a Poisson (w/β) random variable, and find a 95% confidence interval of λ .

Ph.D. Qualifying Exam: Numerical Analysis February 2016

Student ID:

Name:

Note: Be sure to use English for your answers.

- 1. [20 pts]
 - (a) Define a Lagrange interpolation polynomial with data $\{(x_i, f(x_i))\}_{i=0}^n$ for x_i all distinct.
 - (b) What is the error form in the above? Derive it.
 - (c) Define a Newton's form of interpolation polynomial using the same data.
 - (d) Explain what happens if some x_i are repeated in the Newton's form. What is the correct data corresponding to the repeated points?
- 2. [15 pts] Describe Newton's method to solve a system of nonlinear equations $\mathbf{F}(\mathbf{x}) := A(\mathbf{x})\mathbf{x} + \mathbf{g}(\mathbf{x}) + \mathbf{b} = 0$ starting from some initial point \mathbf{x}_0 . Here $\mathbf{x} = (x, y)$ and $\mathbf{b} = (b_1, b_2)$ are nonzero vectors, $A = (a_{ij}(\mathbf{x}))$ is a 2×2 nonsingular matrix of variable entries $a_{ij}(\mathbf{x})$, and $\mathbf{g}(\mathbf{x}) \in \mathbb{R}^2$ is a C^1 vector function of \mathbf{x} . In describing, include a specific form of the derivative of $\mathbf{F}(\mathbf{x})$.
- 3. [10 pts] Explain Runge phenomena in approximation theory and suggest how one can avoid it.
- 4. [20 pts] Define the following basic numerical methods to find the roots of a real valued equation f(x) = 0 when $x \in \mathbb{R}$. Discuss advantage/disadvantage, condition for convergence, convergence rate, etc.
 - (a) Bisection method
 - (b) Picard's method
 - (c) Newtons method
 - (d) Secant method
- 5. [15 pts] Prove the following Schur lemma: If $M \in \mathbb{C}^{n,n}$, then \exists a unitary matrix U such that $U^H M U = T$, where T is upper triangular.

Hint: Start with an eigenpair (λ_1, \mathbf{u}) of M with $\|\mathbf{u}\|^2 = 1$, find an orthogonal matrix U_1 such that

$$U_1 {\bf e}_1 = {\bf u}$$
.

- 6. [20 pts] Explain briefly the following methods for computing eigenvalues of certain matrices. Discuss applicability, effectiveness, etc.
 - (a) Jacobi algorithm
 - (b) Givens algorithm
 - (c) QR iterations
 - (d) Power method

Ph.D. Qualifying Exam: Combinatorics February 2016

Student ID:

Name:

Note: Be sure to use English for your answers.

1. [20pts] Let n be a positive integer. Let G be the complete graph on $\binom{n}{3}$ vertices such that V(G) is the set of all 3-element subsets of $\{1,2,\ldots,n\}$. We color each edge $\{A,B\}$ by red if $|A\cap B|=1$ and by blue otherwise.

Prove that $R(n+2, n+1) > \binom{n}{3}$ by using this coloring of G.

(Here, R(m,n) denotes the minimum N such that every coloring of the edges of K_N into two colors red and blue induces a red K_m subgraph or a blue K_n subgraph.)

- 2. [20pts] Prove that every graph G contains a 3-colorable subgraph H such that $|E(H)| \geq \frac{2}{3}|E(G)|$.
- 3. [20pts] Let f(n) be the maximum number of edges in an *n*-vertex simple bipartite graph without a cycle of length 4. Prove that $f(n) \leq (1 + o(1))n^{3/2}$.
- 4. [20pts] Let $k \geq 2$. Suppose that \mathcal{F} is a set of subsets of $\{1, 2, \ldots, n\}$. Prove that if \mathcal{F} contains no k members A_1, A_2, \ldots, A_k such that $A_1 \subseteq A_2 \subseteq A_3 \subseteq \cdots \subseteq A_k$, then

 $\sum_{X \in \mathcal{F}} \frac{1}{\binom{n}{|X|}} \le k - 1.$

- 5. [20pts] Let $M = (m_{ij})_{i,j}$ be a symmetric $n \times n$ matrix satisfying the following.
 - (i) $m_{i,j} \in \{1, 2, ..., n\}$ for all $i, j \in \{1, 2, ..., n\}$.
 - (ii) $m_{i,j} \neq i$ and $m_{i,j} \neq j$ for all $i \neq j$.

Prove that there exists a subset X of $\{1, 2, ..., n\}$ such that $|X| \ge \frac{1}{2}\sqrt{n}$ and $m_{i,j} \notin X$ for all $i, j \in X$ with $i \ne j$.

Hint: Take a random subset Y and do something to get X from Y.